❓Что делать, если во временных рядах есть сезонные пики, которые могут быть ошибочно приняты за выбросы
Временные ряды часто имеют регулярные сезонные колебания — например, рост трафика в выходные или всплески продаж в праздники. Если такие пики воспринимаются как выбросы, модель может неправильно их интерпретировать и давать неточные прогнозы.
Что можно сделать: 1️⃣Сезонная декомпозиция: методы вроде STL (Seasonal-Trend decomposition using Loess) позволяют выделить тренд, сезонность и остатки. После отделения сезонной составляющей можно искать выбросы только в остатках. 2️⃣Учет временного контекста: добавьте в модель признаки, отражающие временные аспекты (например, день недели, час суток), чтобы алгоритм «понимал», когда пики — это норма. 3️⃣Устойчивые модели прогнозирования: такие модели, как Prophet или SARIMA, умеют учитывать сезонность и различать регулярные циклы от настоящих аномалий.
Особую сложность представляет нерегулярная сезонность, например, неожиданные праздничные всплески. Если модель не знает об этих событиях, она может ошибочно посчитать их выбросами. Поэтому полезно добавлять внешнюю информацию о праздниках и акциях.
❓Что делать, если во временных рядах есть сезонные пики, которые могут быть ошибочно приняты за выбросы
Временные ряды часто имеют регулярные сезонные колебания — например, рост трафика в выходные или всплески продаж в праздники. Если такие пики воспринимаются как выбросы, модель может неправильно их интерпретировать и давать неточные прогнозы.
Что можно сделать: 1️⃣Сезонная декомпозиция: методы вроде STL (Seasonal-Trend decomposition using Loess) позволяют выделить тренд, сезонность и остатки. После отделения сезонной составляющей можно искать выбросы только в остатках. 2️⃣Учет временного контекста: добавьте в модель признаки, отражающие временные аспекты (например, день недели, час суток), чтобы алгоритм «понимал», когда пики — это норма. 3️⃣Устойчивые модели прогнозирования: такие модели, как Prophet или SARIMA, умеют учитывать сезонность и различать регулярные циклы от настоящих аномалий.
Особую сложность представляет нерегулярная сезонность, например, неожиданные праздничные всплески. Если модель не знает об этих событиях, она может ошибочно посчитать их выбросами. Поэтому полезно добавлять внешнюю информацию о праздниках и акциях.
Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.
The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.
Библиотека собеса по Data Science | вопросы с собеседований from ru